

Hierarchical Storage Management (HSM)

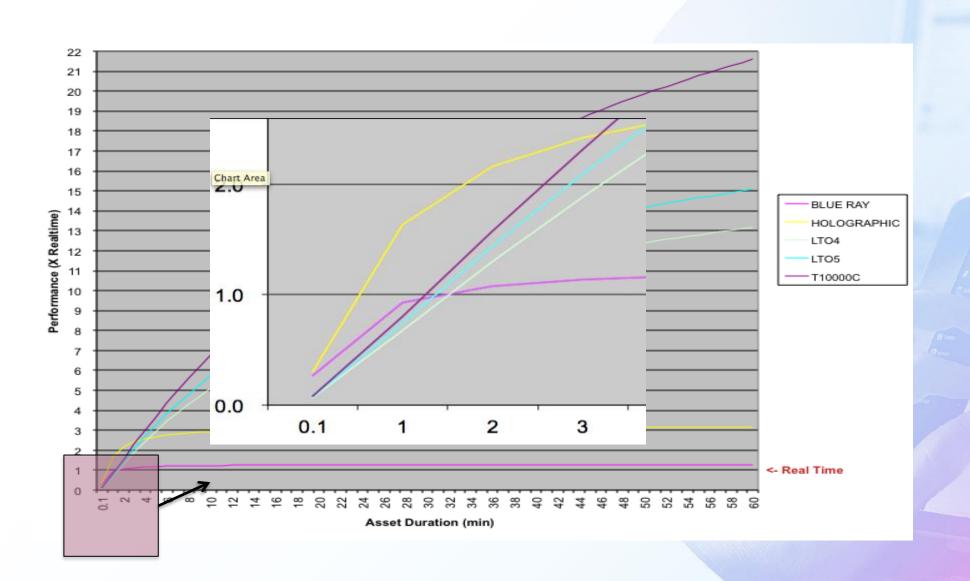
- Etere HSM is a object aware, intelligent archive management solution
- HSM is the middleware which resides between any devices which produce or consume file-based content and commodity storage
- HSM is VERY different than disk migration solutions (SAMFS, StorNext, TSM, etc.) which do not handle content as "objects"
- Etere HSM in media applications offer "content aware" features such as transcoding, timecode partial restore, asset analytics, etc. but also extend to non-media applications as well!
- HSM offer direct integration with business systems to fundamentally link processes, resources and metadata with the content repository

Hierarchical Storage Management

Global Storage Trends

- Over the next five years the media and entertainment industry will see a ~10X increase in required digital storage capacity
- Currently 93% of the total storage capacity is used for content archiving and long term preservation
- This number is expected to grow to ~96% by 2015 due to more efficient conversion services, lower overall storage costs and a greater ROI on long tail content

Media Type Trends	2010	2015
Data Tape	86%	83%
Hard Drive	10%	14%
Optical	4%	2%
Flash	0.2%	0.6%


Storage Format Choices

	Hard Disk Storage	Flash Storage	Optical Storage	Data Tape Storage
Pros	 Fast transfer speeds Good storage density Random access media Fast mechanical times Multiple R/W streams 	 Random access Persistent storage Low energy costs Acquisition format Fast access Rugged 	 Random access No contact read/write Acquisition format Emerging holographic Low replication costs 	 Fast transfer speeds Storage density Rugged media Cost per TB Extremely portable Expansion costs Low replication costs
Cons	 Tied to host chassis Not portable Cost per TB Cost of ownership Highly mechanical Expansion costs High replication costs 	 Limited read/write Cost per TB Proprietary formats Low transfer speeds Low storage density 	 Low storage density Low transfer speeds Questionable shelf life Portability Single R/W stream 	 Sequential data access Head and tape wear Slower access Single R/W stream

Storage Technology Summary

	Туре	Media Capacity (GB)	Media Capacity 50Mbps (Hours)	Drive Cost	Street Price (\$/TB)	Drive Speed (MB/s)
BLU RAY	Optical	50	2	\$\$	\$600	14
HOLOGRAPHIC	Optical	300	13	\$\$\$	\$600	20
SOLID STATE (SSD, P2,)	Flash	16-256	1 - 10	HIGH	\$2,000	~250
SAIT2	Таре	800	35	\$\$\$	\$200	45
LTO4	Tape	800	35	\$\$	\$25	120
LTO5	Tape	1500	65	\$\$\$	\$55	140
TS1140	Tape	4000	175	\$\$\$\$	\$90	240
T10000C	Таре	5000	220	\$\$\$\$	\$70	240

Real World Performance (50Mbps)

Storage Technology Migration

- Data tape "shelf life" need not be a problem once assets have been digitized and placed under HSM control
- HSM systems automatically manage migration to newer storage technologies as a background process at much faster than real time rates
- Each storage generation brings better performance and higher storage density
- Checksums are used during all migration operations to ensure exact byte-for-byte copies are made

Data Tape is the Only Solution

- Unmatched storage density and value
- High performance media ensures no bottlenecks
- TCO is low as data tapes consume no power or cooling
- Low media costs allow automatic offsite asset replication
- Checksums confirm all subsequent file operations
- Automatic migration to new formats ensures longevity
- Initial capital costs are high but flatten out very quickly

What about the Cloud?

- Amazon, Microsoft and many others offer scalable cloud based storage "services"
- All claim reduced capital costs and high availability via globally distributed data centres
- Unfortunately these solutions are not tuned for "big data"
- Amazon Simple Storage Service (S3) cloud storage costs:
 - \$0.125/GB per month to store data
 - No charge for archive transfers (uploads)
 - \$0.10/GB for restore transfers (downloads)
- Let's take a look at a real world Amazon S3 example...

What about the Cloud?

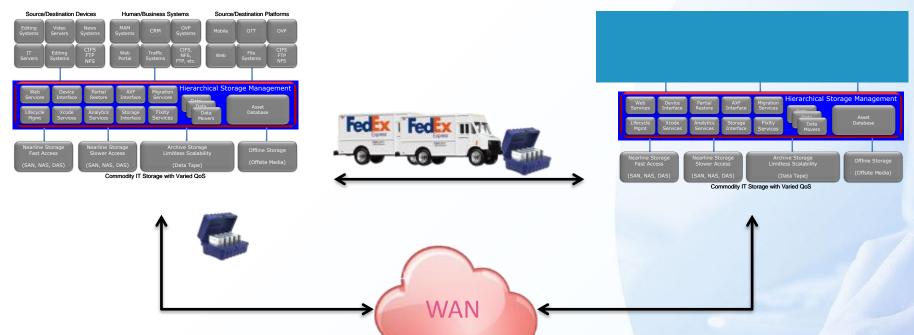
Assumption 10TB/Month Growth Over Five Years	Annualized WAN Fees	Annualized Cloud Storage Fees	Repository Size at the End of Each Year	Total Annualized Cloud Storage Cost
Year 1	\$30,000	\$97,500	120TB	\$127,500
Year 2	\$30,000	\$277,500	240TB	\$307,500
Year 3	\$30,000	\$457,500	360TB	\$487,500
Year 4	\$30,000	\$637,500	480TB	\$667,500
Year 5	\$30,000	\$817,500	600TB	\$847,500
	~ \$2.5M			

Pricing based on Amazon S3 cloud services in \$USD Results in an average cost of more than \$4,000/TB over five years Annual storage fee of \$900,000 continues forever!!!

Can Cloud Storage Work?

- Commodity IT-centric cloud solutions such as Amazon cannot work in "big data" environments like those typical in the media industry
- However HSM-based solutions "in the cloud" are now available and do make real economic sense
- These solutions offer cost effective "big data" storage as well as the content-centric features of "HSM as a service"
- How do different cloud services topologies fit and can the transition be handled in a staged manner?

Offsite Media Storage

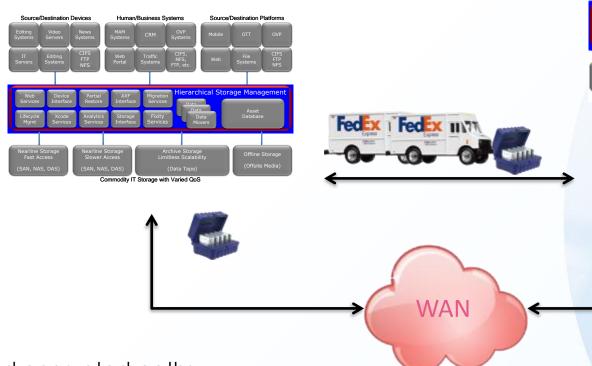

PROS

- Cost effective content protection
- Data tapes can be shipped daily offering rapid protection
- "FedEx" offers fast transfers!
- Scale to any size with little additional investment
- Capital costs are minimal
- Workflows are very well known...

CONS

- Workflows are human intensive
- Recall times can be excessive
- Tapes on the shelf are not "active" and must be managed over time
- Does not offer any redundancy to the main facility
- Main facility disaster can take a significant amount of time to recover from

The Private Cloud


PROS

- Private, secure and protected paths
- Controlled and fairly predictable workflows
- •Business continuance possible
- •Shipping of high density data tape media is FAST and INEXPENSIVE

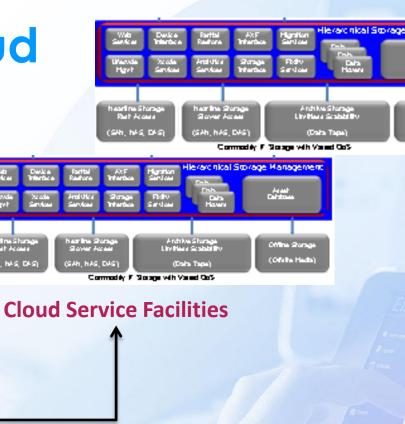
CONS

- •Two or more facilities necessary
- Infrastructure, capital and staffing costs are simple multiples
- •Technical challenges are multiplied by the number of facilities
- Heavy capital and operations costs

The Hybrid Cloud

HSM Cloud Service Provider

CONS


- Content must be stored in a
- "hosted" environment
- Security is a key concern which must be carefully managed

PROS

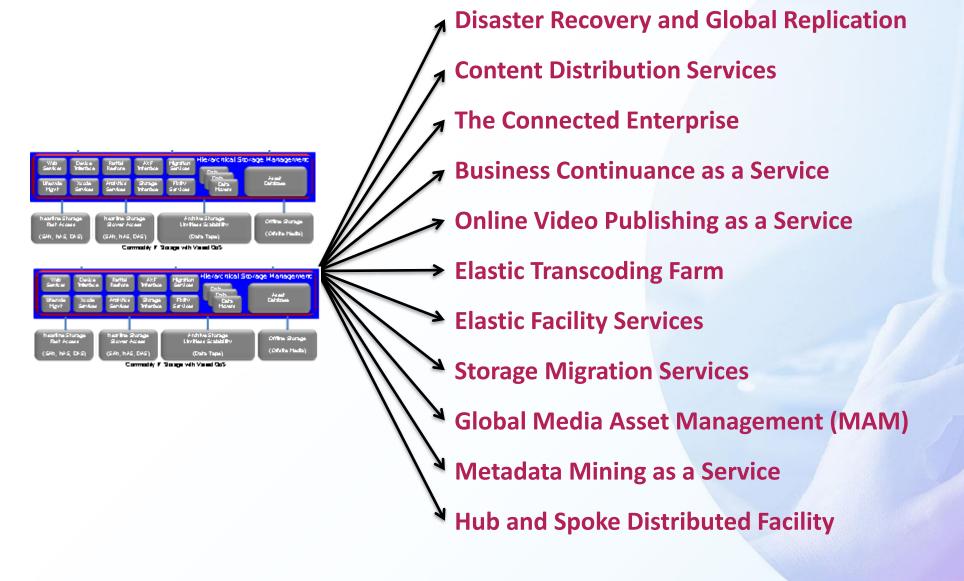
- Protected and encrypted paths
- Controlled and predictable managed workflows
- •Business continuance as a service possible
- •Shipping of high density data tape media is FAST & INEXPENSIVE
- •Services can be "tuned" on demand

HSM in the Cloud

WAN

Customer Facilities

Applianc


<u>PROS</u>

- •HSM as a service
- Protected and encrypted paths
- •Controlled and predictable managed workflows
- •a as a service
- Services can be tuned on demand
- •Global distribution and diversity
- Perfect for "elastic" applications

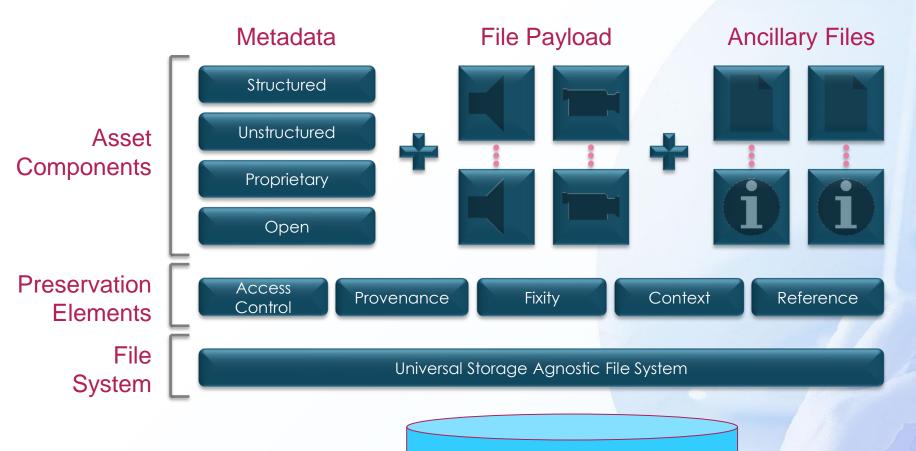
CONS

- Content stored in a "hosted" environment
- Network costs can be prohibitive
- High availability WAN must be part of the solution
- Local "caching" may be necessary to ensure rapid local access

Cloud Services Evolution

How are my Valuable

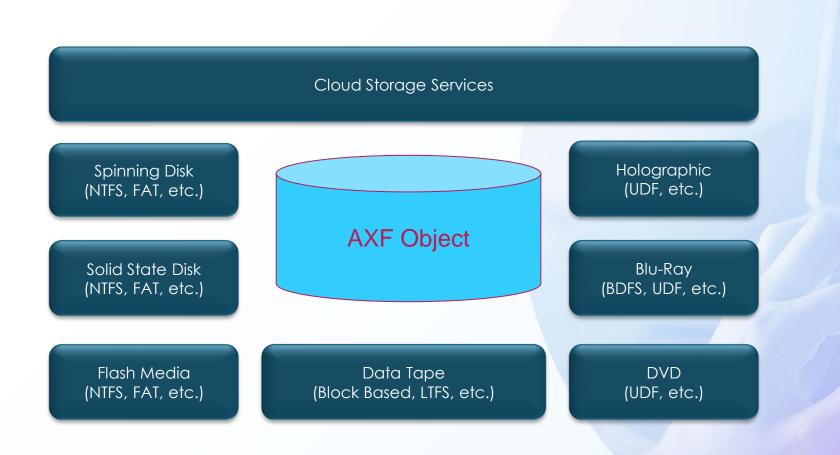
Assets Actually Stored?


How Are My Valuable Assets Stored?

- We must take steps to ensure long term accessibility to valuable filebased assets
- Key goals of the "ideal storage format" include:
 - Ensure long term accessibility
 - Self descriptive assets and self descriptive storage media
 - Preservation (OAIS) features such as fixity, provenance, etc.
 - File encapsulation to wrap related metadata and files
 - Scalability for any number of elements of any size and type
 - Standardized regardless of storage media technology
 - Transportability and compatibility between systems
- What choices are there?

Archive eXchange Format (AXF)

- AXF was in the final process of standardization by SMPTE
- AXF is a fully self-contained, self-describing file storage "container" – think of it as advanced "ZIP"
- AXF is IT-centric and not tied to media applications only!
- AXF is based on an innovative "file system per object" approach
- AXF fully supports all storage technologies now and into the future!


What is AXF?

AXF Object

AXF and Storage

AXF is storage technology, operating system and file system agnostic

AXF Benefits

- AXF Objects can scale to any size and encapsulate any number of files with full support for media spanning
- No need to upgrade existing storage infrastructures
- AXF guarantees long term compatibility and resiliency with self-describing features for both AXF Objects and AXF Media
- AXF overcomes all the technical, operational and functional limitations of other options such as TAR and LTFS
- AXF is an IT-centric implementation and is not limited to media files alone (documents, imaging data, etc.)
- Visit OpenAXF.org for more information